Kocher Lab Guides

Release 1.0

Dec 05, 2022

Guides:

1	Kocher Lab Online Resources	1
2	RNA-seq Tools and Analyses	9
3	SLURM	21
4	VPN Installation Instructions	25

CHAPTER 1

Kocher Lab Online Resources

1.1 Specimen Database

The Kocher lab specimen database may be found at the Kocher Lab Specimen Database. By default, the login page will be displayed.

Access to the database requires:

- A Google account or a Princeton account (must be linked to Google)
- Permission for the account to access the database (ask Andrew)

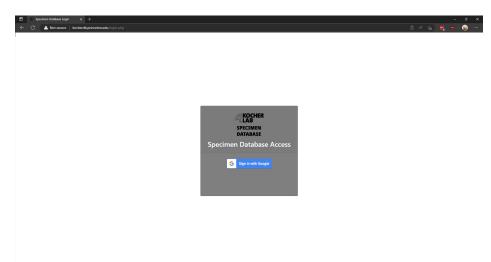


Fig. 1.1: Specimen database login Page

Once granted access to the database, the homepage will be displayed.

To begin searching the database, select Search Database link and select the table you wish to examine.

Start searching!

Fig. 1.2: Homepage

🔍 Search Database 🗹 Add Data · 🏵 Upload Data · 😉 Documentation · 🔗 Links · 🗷 Contact

Welcome to the Kocher Specimen Database!

Start searching!

Fig. 1.3: Search the database

Fig. 1.4: Tables within the database

Once a table is selected, it will be displayed below. The displayed data may be downloaded by clicking either **CSV** or **Excel**.

KOC	CHER 3	SPE	CIME	N D	ATAE	BASE															
iearch Datal	base - 🕑 Add Data - O	Dupload Data	• O Documenta	ation · 🕜 L	nks - 🖾 Contai	a															
								Returning 1 to	5.229 of 5	.229 record	Is									Start a nes	v search
	CTION																				
dd to Table							_														
W 10	 entries 			Colu	mn Visibility	CSV Do	el						Search	c							
illection	Site Species Code Guess	11 Status 11	Species 1	Reads	Percent Identity 11	Collected By	Date Collected	Time Entered	Sex 🗐	Life Stage 🗐	Has Pollen	Sample Preserved	Sample Preservatio Method		ad sserved 11	Head Preservat Method	ion F	rom vest ⊥⊺	Nest Code	Notes	Colle
DER1-A1	CRN						2016-07-30		Female												collec
BER1-A10	HTP						2016-08-01		Female												collec
BER1-A11	ILT						2016-07-03		Unknown												collec
BER1-A12	HCC	Species Identified	Lasioglossum leucozonium	4881	100		2016-08-02		Female												collec
BER1-A12	HCC	Species Identified	Lasioglossum leucozonium	4881	100		2016-08-02		Female												collec
BER1-A2	COB	Species Identified	Halictus confusus	5993	100		2016-08-03		Male												collec
BER1-A2	сов	Species Identified	Halictus confusus	5993	100		2016-08-03		Male												collec
BER1-A3	сов						2016-08-03		Female												collec
BER1-A4	WAK						2016-08-04		Male												collec
BER1-A5	COB						2016-08-03		Female												collec
																	_				

Fig. 1.5: Download data from the table

1.2 Beenomes: Genome Browser and Sequence Database

The Kocher lab genome browser and sequence database may be found at the Halictid Genome Browser. This page requires no special login and is available to the public. The homepage hosts links to access the genome browser and/or download the genomes (which are also available on Argo).

As an example, to access the genome browser for *Lasioglossum albipes* (LALB) you scroll until you reach the image of LALB, then click on the image.

The LALB genome browser (built using Jbrowse) will then be loaded. Like the UCSS genome browser, additional information may be displayed by selecting additional tracks.

■ Welcome to the Kocher Lab Do: x // Halictid Genome Bio ← → C	Asser-Roch X +		- 0 × @ A 16 💂 0 🙆 …
	Halictid Genome Browser	About the bees Access the browser Download the data	
	Halictid Gen	ome Browser	
		A comparative genomic dataset to to study the evolution of social behavior in bees	
	19 sweat bees genomes that span multiple gains and losses of eusociality.	sembled genomes Download the assemblies and	
	halictids and genom	e alignments annotations owse Download	

Fig. 1.6: Beenomes Homepage

□ III Welcome to the Kocher Liab Doc. x III Haliclid Genome Bro ← → C Ô https://beenomes.princeton.edu	wser-Kodi x +		- • × • • • • • •
	Halictid Genome Browser	About the bees Access the browser Download the data	
	Halictid Ge	nome Browser	
	19 aveat less generate that span multiple gelen actions	A comparative genomic dataset to to study the evolution of social behavior in bees	
	halictids and geno	ssembled genomes me alignments anotations	

Fig. 1.7: Selecting the genome browser

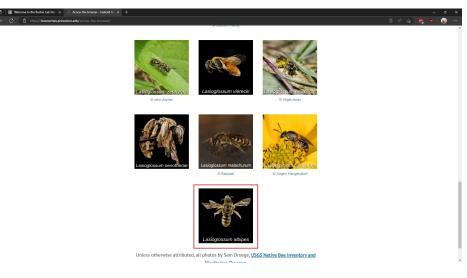


Fig. 1.8: Selecting LALB

Construction Construction<	vailable Tracks	Genome Track															5 Share
Odf Dimma degrada Dimma degrada <thdimma degrada<="" th=""> Dimma degrada</thdimma>	<filter th="" tracks<=""><th>0 1,000,000</th><th>2,000,000</th><th>3,000,0</th><th></th><th>5,000,000 6,000</th><th>0.000 7.000.000</th><th>8,000,000</th><th>9,000,000</th><th>10,000,00</th><th>0 11,000,</th><th></th><th>,000 13,000,0</th><th>00 14,0</th><th>100,000 1</th><th>5.000.000</th><th>16,0</th></filter>	0 1,000,000	2,000,000	3,000,0		5,000,000 6,000	0.000 7.000.000	8,000,000	9,000,000	10,000,00	0 11,000,		,000 13,000,0	00 14,0	100,000 1	5.000.000	16,0
Canadi Oracle Construction Open to be an agreent Date to be agree	Conservation	1			<) 🔿 ધ	્વિભ્	ALB_chr_1 -	LALB_chr_1:1	.2858000 (2.87	Mb)			_			
	CNEEs CONTRACT	2		503,010													
	Genes	1 O Keterence seguence	e sconesce		Zoom in to see seq	uence	Zoom in to see sequ	aence	Zoor	n in to see sequ	ence	Zos	en in to see seque	ice	2	Jom in to se	re seq
	Genes	A PLUE THE M								-						8-	
Marcare participation Marcare participation	eference sequence		-#		+ + ++		+ + +		[+ +] [+				-1 -			- TH	•
A Y N	Reference sequence	÷.						-	+ +				10	1.114			
BG A A A A A A A A A A A A A A A A A A A	5	7									# * 1						
	1706 Hala You You You You You You																

Fig. 1.9: Available tracks

It's also possible to search the database for:

- Genes
- Ortholog Groups
- Chromosomal positions

If possible, the result will then be displayed.

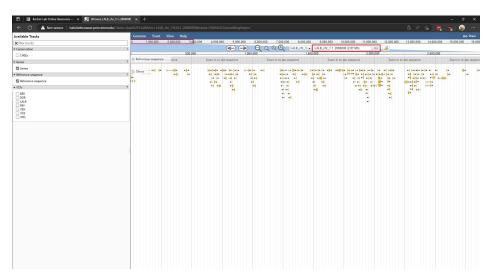


Fig. 1.10: Search the database

It's also possible to simply zoom in to better display a gene of interest. To bring up additional information for a gene, one may:

- · Left click to display relevant details
- Right click to display options, including links to the sequence database

Genome Track View Hel					co Share
1,000,000 2,000,000	3,000,000 4,000,000 5,000,000	6,000,000 7,000,000 8,000,000	9,000,000 10,000,000 11,000,000 12,0	000,000 13,000,000 14,000,000	15,000,000 16,00
	$ \rightarrow $		LALB_chr_1:2528448.2591319 (62.87 Kb) Go 💷 🔊		
2,537,500	0 2.55	0,000 2	562,500 2.575	,000	2,587,500
3 Reference sequence	Zoom in to see sequence	Zoom in to see sequence	Zoom in to see sequence	Zoom in to see sequence	
Genes LALB_06381-RA +	•	• • •	• • • •		;

Fig. 1.11: Zoomed in vier of LALB_06381

The options listed are:

- View details i.e. left clinking the gene
- Highlight the gene
- Download CDS(s) CoDing Sequence)
- Download Proteins(s)
- · Download Orthologs

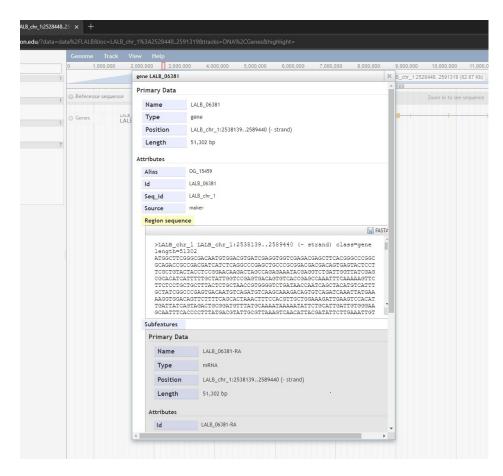


Fig. 1.12: Left click to view details of LALB_06381

2.537,500 2.550,000 2.562,500 Reference sequence Zoom in to see sequence Zoom in to see sequence	2.537,500 2.550,000 2.562,500 Reference sequence Zoom in to see sequence Zoom in to see sequence Genes LALB_06381-RA LALB_06381 Image: Comparison of the sec sequence Download CDS(s) Download CDS(s) Download Protein(s)	1,000,000 2,000,000	3,000,000 4,000,000	5,000,000 6,000,00		8,000,000 9,000,00
© Genes LALE_00331-RA LALE_00531 ↓ Highlight this gene	© Genes LALE_00331-RA LALE_00531 ↓ Highlight this gene	2,537	.500			
LALB_06381 View details Highlight this gene Download CDS(s) Download Protein(s)	LALB_06381 View details Highlight this gene Download CDS(s) Download Protein(s)	Reference sequence	Zoom in to see sequ	ence	Zoom in to see sequen	ce
		Genes	 View details Highlight this gene Download CDS(s) Download Protein(s) 			

Fig. 1.13: Right click to view options of LALB_06381, and access the sequence database

The three **Download** options open a new page on the Kocher lab sequence database. The sequence database was designed to store FASTA sequences (CDS and amino acid) and orthologs for each transcript. Selecting **Download CDS(s)** will open the following database entry for the gene in question.

C 🔺 Not si	acure halictidbrowser.princeton.edu/?data=dat											🛞 ··
ole Tracks		Genome Track										
		0 1,000,000	2,000,000 3,000,000	4,000,000 5,000,000	6,000,000 7,000)	00 8,000,000 9,	000,000 10,000,000	11,000,000 12,000,000	13,000,000	14,000.00	00 15,000	0,000 19
rvation					○ ○ ○ ①	LALB_dv_1 + LALB	chr_1:2528448.2591319 (8	2 87 Kb) Go 🔬				
EEs	Download LALB_06381 CD5(s) http://heiictiddb.orin	ceton.edu/cds-lookus/LALI	06281							×	2,583	500
									_			
	KOCHER Gene Orthologs											
145	KOCHER Gene Orthologs	CDS Protein										
ince sequence												
erence sequence	LALB 06381: Download FASTA											
	-									_		
	>LALB_06381-RA											
8	ATODCTTCDDDCCARATGTCGACGTGATCGADGTG											
	GOGCAGACOGCOGACGATCATCTCAGGCCCGAGCTG											
	AC993333ACAA99T0AC99C0TTT0ACA9CTC95TA											
	AAAACCOCTGCGGGGGGTGTCGAGGAACAAGTCGGAG											
	AGROTTODOSTODORGOTORARTCACOTACARRAG											
	TOSATACAACTOSOCATACASCACOCOSTOSOCOST											
	TIGTIGATOCAGGATITCATGACCGTCGAAACGACG											
	CACACCCOSSCICATCATITICIOCSASTITAASTIC											
	COCTACTITCORGATCTCTTCOOCATCCRACCOSAC											
	GCTCCGTTACGCGAACTATCGAACCCG99CGCTAGC											
	GATGACGAGTTCATCATARAGACTGTGCRACACAA											
	CTTOCGGGATATTATATGAACCTGAATCAAAATCCG	ADDACOCTACTOCCARA	FICTIC									
	000TT0TATT0CTATC0TT0TRATA0TAA0AAC0TT											
	CTGCCCTCGTCGGTCAAGCTGCATCAGAAGTACGAT											
	ARSSCSTCSARARCSSRARSSTCCARSTCTTCTCCS	ACSTACAASSACTTOSAS	TTCATS									
	GARCACCATTCTGACGGCATCTTCTTGGAGGCGGAC											
	ATCCASESESCTOCEODOTOTTOSESESCTTTEES	ATCATOSACTACTCTCT	CTOSTC									
	GGTATCCATAATCTCGATCAGGCGGCGAGAGAAAAG	GCGCAGGAACAGAGGTTJ	LTC99CC									
	ASCOSCORCORRAGESTOSSCORCOTOSCASSOSAC	actroassocractor	USCOSAA.									
	AGRGAACODDAGAGAGADSATAGAATADSASCTOGA	SCICIGRACCORTOSCO	LADCATA									
	ARCOSACARASSTIGSTOSCECATASIACCECTATS	GAGAGTATCCA99CCGAJ	LASCEAS									
	COGATOGROGRAGROGRIGIACCTOCRGGIGGG	ATCCCASCTOSCAATSO	0000000									
	GAROSCOTOTTROTOTTOCTOGGTATCATTGRTATT	TTOCARASTIACAGOCTI	AABAAA									
	AROCTCOROCACECTTOGRAATOCATORTACROSAC	OSTGACACOSTATCOST	PCATOSS									
	CO999CTTTTAO9C9CRAC9CTTTCRASACTTCAT9	OCCARGACAGTATTCAM	ATABATA									
	CCGTCACTGGACCTGCCTGGGATTAAGGGGAATCAT	COCAAATTCCGTAACCTC	COTCACC									
	ASCTACATASCOTTGAAACATACCCCOCCOAASAGA	ARGAGCATCGGCGGCCCC	STTCASS									
	CCCATGGACGACGACTTOSTTTOCACCGCGATGGCG	ACAACODDAADTACORCJ	ATOCAT									
										*		
	L											

Fig. 1.14: CDS sqeuence for LALB_06381

At the top of the sequence database webpage there are links to:

- Orthologs Site linking to the IDs of orthologs sequences (where possible).
- CDS CDS sequence(s) of the of the gene in question. Also has an option to download FASTA file(s)
- Protein Protein sequence(s) of the of the gene in question. Also has an option to download FASTA file(s)
- Gene (At present links to other information)

Selecting **Orthologs** will display the following page. Please note that **Orthologs** page displays both **Halictid Orthologs** and **Other Orthologs** (Drosophila and/or AMEL IDs). The page provides links to database entries for the *Halictids* and AMEL, and provides links to Flybase for Drosophila IDs. The page also provides links to download a FASTA file of the orthologs sequences.

	secure naixtudorowsel.princeton.edu//data=da	tsRx2RAL880x=LAL8_chr.1%3R2528448.25913198.tmacks=DNA%2CGenee8hightight= Genome Track Wew Help	₿ A ^s	10	5 %		
able Tracks ar tracks		Genome Fack View Help 0 1,500,000 2,000,000 3,500,000 4,000,000 5,500,000 6,000,000 7,500,000 8,000,000 9,500,000 10,000,000 11,500,000 12,000,000	13,000,000	14,000.0	00 15	C GG 000,000	16,
servation		← → ○ ○ ④ ⊕ LALE_07_1 + LALE_07_12558446 2591319 (82.67 K0) 00 Ø					
NEES	Download LAL8_06381 CD5(s) http://haiktistb.ork	KONTON-BOD/INDE/INDE/INDE/INDE/INDE/INDE/INDE/IND		×	2	567,500	
5				*			
nes	KOCHER Gene Orthologs						
rence sequence	-ALAB						
eference sequence	LALB_06381:						
	Download Halictid Orthologs F.						
85	Download Hallotid Orthologs F.	ASTAS: CDS Protein					
IOR ALB				_			
M	Halictid Orthologs:						
56	ARUR_05670						
1911	APUR_02694						
	DNOV01582						
	HLIG_10108						
	HDUA_09727 MRUB_10631						
	LBAL_00589						
	LCAL 03135						
	LFIG_07438						
	LLEU_06318						
	LMAL 02169						
	LMAR_09182						
	LOEN 00740						
	LPAU_07578						
	LVIE_09916						
	L2EP_02581						
	Mgen10116						
	NMEL 00378						

Fig. 1.15: Orthologs for LALB_06381

CHAPTER 2

RNA-seq Tools and Analyses

The primary purpose of the following documentation is to give insight into the various steps, procedures, and programs used in typical RNA-seq analyses. In the sections below, you will find details on the basic usage of various software packages. Please note that the majority of software packages listed below accept additional arguments that may be found within their documentation. Links to the documentation (and other important information) may be found within the **Useful Links** section of each software package.

2.1 Quality Control (QC)

"Garbage in, garbage out" is a concept popular among bioinformaticians to highlight an immutable truth; the quality of an analysis (i.e. the output) is dependent on the quality of the input. Therefore, most bioinformatic pipelines begin with QC steps to identify and remove data that may be detrimental to an analysis.

All QC programs may be imported using:

conda activate kocher_SEQ

2.1.1 FastQC

A simple and straightforward method to identify quality concerns within BAM, SAM or FASTQ files. The output from FastQC is an HTML file that may be viewed in any browser (e.g. chrome) (Fig. 2.1). The output contains eleven sections flagged as either *Pass* (green check mark), *Warn* (yellow exclamation mark), or *Fail* (red X). It should be noted that all sections of the output should be examined, rather than just sections marked as *Warn* and *Fail*, to determine the best selection of filters to apply.

Usage

```
# Running FastQC on a single file
fastqc KMT5L_D05.fq.gz
```

(continues on next page)

Report **Report**

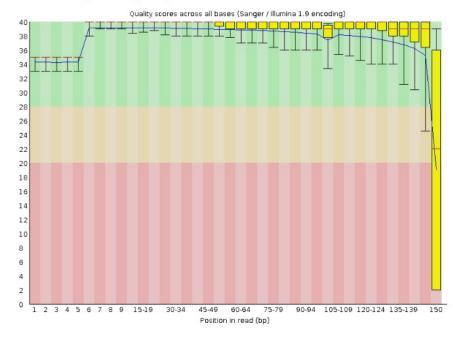
Summary

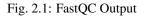
Basic Statistics

2 Per base sequence quality Per tile sequence quality

Per sequence quality scores Per base sequence content Per sequence GC content Per base N content

Sequence Length Distribution Sequence Duplication Levels


Overrepresented sequences


Adapter Content

Basic Statistics

Measure	Value
Filename	KMT5L_D05.fq.gz
File type	Conventional base calls
Encoding	Sanger / Illumina 1.9
Total Sequences	11041951
Sequences flagged as poor quality	0
Sequence length	150
%GC	43

Per base sequence quality

(continued from previous page)

```
# Running FastQC on multiple files
fastqc KMT5L_D05.fq.gz KMT6L_A04.fq.gz KMT6L_A12.fq.gz
```

Useful Links

- Documentation
- Github
- Reference (website)

2.1.2 fastp

A comprehensive and rapid filtering method for FASTQ files. fastp is able to perform quality control, adapter trimming, quality filtering, per-read quality pruning, and many other operations. Most analyses will require at least two operations: 1) adapter trimming and 2) per read trimming by quality score.

Adapter trimming includes various options from defining adapter sequences on the command-line to adapter autodetection; adapter trimming may also be disabled, if desired.

Trimming by quality score includes three methods:

- -cut_front Move a sliding window 5' to 3', drop the bases in the window if its mean quality is below a specified threshold.
- -cut_tail Move a sliding window 3' to 5', drop the bases in the window if its mean quality is below a specified threshold.
- -cut_right Move a sliding window 5' to 3', if the mean quality of a window is below a specified threshold, drop the window and the sequence to the right (i.e. 3').

Many of these methods may be altered to be similar to functions within the Trimmomatic package, if desired.

The output from fastp is an HTML file that may be viewed in any browser (e.g. chrome) (Fig. 2.2) and a JSON file that may be used for further interpreting. The HTML contains details on the input before and after the filtering process.

Usage

```
# Single end data
fastp -i KMT5L_D05.fq.gz -o KMT5L_D05.filtered.fq.gz
# Paired end data
fastp -i KMT5L_D05.R1.fq.qz -I KMT5L_D05.R2.fq.qz -o KMT5L_D05.filtered.R1.fq.qz -0,
→KMT5L_D05.filtered.R2.fq.gz
# Paired end data with paired end adapter auto-detection
fastp -i KMT5L_D05.R1.fq.gz -I KMT5L_D05.R2.fq.gz -o KMT5L_D05.filtered.R1.fq.gz -O.
→KMT5L_D05.filtered.R2.fq.gz --detect_adapter_for_pe
# Paired end data using the the cut_right method with a
# window size of 3 and a mean Phred quality of 20
fastp -i KMT5L_D05.R1.fq.gz -I KMT5L_D05.R2.fq.gz -o KMT5L_D05.filtered.R1.fq.gz -O_
→KMT5L_D05.filtered.R2.fq.gz --cut_right --cut_right_window_size 3 --cut_right_mean_
                                                                          (continues on next page)
```

```
→quality 20
```

fastp report

Summary

General

fastp version:	0.20.1 (https://github.com/OpenGene/fastp)
sequencing:	single end (150 cycles)
mean length before filtering:	150bp
mean length after filtering:	145bp
duplication rate:	31.802488% (may be overestimated since this is SE data)
Detected read1 adapter:	AGATCGGAAGAGCACACGTCTGAACTCCAGTCA

Before filtering

total reads:	11.041951 M
total bases:	1.656293 G
Q20 bases:	1.612631 G (97.363920%)
Q30 bases:	1.585908 G (95.750441%)
GC content:	43.389068%

After filtering

total reads:	11.022407 M
total bases:	1.600886 G
Q20 bases:	1.573427 G (98.284736%)
Q30 bases:	1.548137 G (96.704969%)
GC content:	43.144475%

Filtering result

reads passed filters:	11.022407 M (99.823002%)
reads with low quality:	30 (0.000272%)
reads with too many N:	2.072000 K (0.018765%)
reads too short:	17.442000 K (0.157961%)

Fig. 2.2: fastp Output

(continued from previous page)

Useful Links

- Documentation
- Github
- Phred scores
- Reference (Chen et al., 2018)

2.2 RNA-seq Read Alignment

In computational biology, sequence alignment is a process used to identify regions of similarity between sequences. An inherent challenge of RNA-seq read alignment is the mapping of sequences from non-contiguous genomic regions – i.e. the mRNAs. At present, two strategies of RNA-seq read alignment have been developed and thoroughly tested: i) traditional alignment to genomic sequence data and ii) pseudoalignment to transcript sequences. Research has shown that both strategies - when applied by highly-accurate algorithms - produce similar ressults (Costa-Silva et al., 2017).

All RNA-seq Read Alignment programs may be imported using:

conda activate kocher_SEQ

2.2.1 Input Files Types

Depending on the preferred alignment strategy, the relevant input file(s) may be found among the following three file types:

- Genomic Sequence (FASTA format)
- Genome annotation (GFF format)
- Transcript Sequences File (FASTA format)

Note: all example files may be found within the NCBI genome page for Apis mellifera HAv3.1.

2.2.2 Input Conversion

It should be noted that some of the methods in this section may require a file conversion step for an input file to be compatible and function correctly.

Genome Annotation: GFF to GTF

This may be done using **gffread**.

```
gffread GCF_003254395.2_Amel_HAv3.1_genomic.gff -T -o GCF_003254395.2_Amel_HAv3.1_

→genomic.gtf
```

Transcript/Gene Conversion File

This may be done using create_tid_converter.py using a GFF as an input.

```
create_tid_converter.py GCF_003254395.2_Amel_HAv3.1_genomic.gff.gz GCF_003254395.2_

\rightarrowAmel_HAv3.1_genomic.tid_to_gid2.csv
```

2.2.3 STAR

A rapid and highly accurate, but memory intensive, traditional alignment capable of producing either SAM or BAM files. Alignment requries two operations: 1) indexing a reference genome and 2) read alignment.

Indexing

Indexing requires two input files to operate:

- Genomic sequence
- Genome annotation

Arguments

-runMode genomeGenerate Required to set the run-mode to indexing

-runThreadN <thread_int> Defines the number of threads for indexing

-genomeDir <output_dir> Defines the name of the output index directory

-genomeFastaFiles <fasta_file> Defines the name of the genomic sequence in fasta format

-sjdbGTFfile <gtf_file> Defines the name of the genomic annotation in GTF format

-sjdbOverhang <overhang_int> Defines the maximum overhang for a read, may be calculated by: read_length - 1

-limitGenomeGenerateRAM <RAM_int> Defines the RAM limit for indexing in bytes

Example Usage

```
STAR --runThreadN 10 --runMode genomeGenerate --genomeDir AMEL_Index --

→genomeFastaFiles GCF_003254395.2_Amel_HAv3.1_genomic.fna --sjdbGTFfile GCF_

→003254395.2_Amel_HAv3.1_genomic.gtf --sjdbOverhang 99 --limitGenomeGenerateRAM_

→38000000000
```

Read Alignment

Read alignment requires two input files to operate:

- Indexed Genome (from previous section)
- Fastq Reads (SE or PE)

Arguments

-runMode alignReads Required to set the run-mode to read alignment

-runThreadN <thread_int> Defines the number of threads for read alignment

-genomeDir <output_dir> Defines the name of the index directory

-readFilesIn <se_fastq_filename>, <pe_fastq_filename pe_fastq_filename> Defines the fastq filenames to align to the index. Please note: when using paired-end reads a space is placed between the files

-readFilesCommand zcat Defines the read method for gzipped fastq files. Only required when using fastq.gz

-outSAMtype <format_strs> Defines the output format, if SAM is not desired. See below for options

-outFileNamePrefix <output_prefix> Defines the output prefix name

Output Options

-outSAMtype BAM Unsorted Defines the output format as unsorted BAM

-outSAMtype BAM SortedByCoordinate Defines the output format as sorted BAM

-outSAMtype BAM Unsorted SortedByCoordinate Defines the output format as separate sorted and unsorted BAM files

Example Usage

Useful Links

- Documentation
- Github
- Reference (Dobin et al., 2012)

Gene Quantification STAR Results w/ featureCounts

A simple and straightforward method from the subread package to estimate gene counts from BAM files. that only requries a **Genome annotation**.

Arguments

- -a <*gtf_file*> Defines the name of the genomic annotation
- -T <thread_int> Defines the number of threads for read alignment

-o <output_file> Defines the filename of the count output

BAM File The filename of the BAM File. Note: Positional argument

Example Usage

Useful Links

- Documentation
- Homepage
- Reference (Liao et al., 2014)

2.2.4 kallisto

A rapid, highly accurate, and memory efficient pseudoalignment method for quantifying abundances of transcripts. Alignment requries two operations: 1) indexing a reference genome and 2) transcript quantification.

Indexing

Indexing requires only the **Transcript Sequences File** and an index filename to be assigned using the following arguments:

Arguments

index Required to set the run-mode to indexing Note: Positional argument

-T <thread_int> Defines the number of threads for read alignment

Transcript Sequences File The filename of the Transcript Sequences File. Note: Positional argument

Example Usage

```
kallisto index -i GCF_003254395.2_Amel_HAv3.1_rna.idx GCF_003254395.2_Amel_HAv3.1_rna.

→fna.gz
```

Transcript Quantification

Transcript quantification requires two input files to operate:

- Indexed Transcripts (from previous section)
- Fastq Reads (SE or PE)

Common Arguments

quant Required to set the run-mode to transcript quantification. *Note: Positional argument*-i <*index_filename>* Defines the filename of the index
-t <*thread_int>* Defines the number of threads for transcript quantification
-b <*bootstrap_int>* Defines the number of bootstrap samples
-o <*output_dir_name>* Defines the name of the output directory
FASTQ Read Files The filenames of the FASTQ Read Files. *Note: Positional argument*

Single-end Mode

-single Required to set the run-mode to single-end transcript quantification

-l <length_float> Defines the estimated average fragment length

-s <stdev_float> Defines the estimated standard deviation of fragment length

Output Options

-pseudobam Defines if pseudoalignments should be saved to a transcriptome to BAM file

-genomebam Defines if pseudoalignments should be projected onto a genome-sorted BAM file. *Note: Requires* -gtf to operate

-gtf <gtf_filename> Defines the name of the genomic annotation in GTF format

Example Usage

Useful Links

- Documentation
- Homepage
- Reference (Bray et al., 2016)

2.3 Differential Expression Analysis

A common use of multiple transcriptome datasets is the search for differentially expressed (DE) genes - i.e. genes that show *significant* differences in expression level between conditions, experimental groups, etc. Many statistical analyses have been developed to perform differential expression analysis (DEA), however, please note that they will likely produce different results (Costa-Silva et al., 2017, ADD OTHER REFS).

All DEA programs may be imported using:

conda activate kocher_DEA

2.3.1 Input Files Types

Depending on the preferred alignment strategy, the relevant input file(s) may be found among the following three file types:

- Count Matrix File
- Sample Groups File
- kallisto Transcript Abundance File (i.e. abundance.h5)
- Genome annotation (GFF format)

2.3.2 Input Conversion

It should be noted that some of the methods in this section may require a file conversion step for an input file to be compatible and function correctly.

Transcript/Gene Conversion File

This may be done using create_tid_converter.py using a GFF as an input.

```
create_tid_converter.py GCF_003254395.2_Amel_HAv3.1_genomic.gff.gz GCF_003254395.2_

→Amel_HAv3.1_genomic.tid_to_gid2.csv
```

2.3.3 DESeq2

A well-studied and thoroughly compared method to identify DE genes using count data. DESeq2 by itself is only capable of accepting count data, such as the output from STAR and featureCounts. However, by using tximport - a program written by DESeq2 developers - it is possible to use other data types, such as transcript abundance data from kallisto. Below you will find commented R scripts for: 1) STAR and featureCounts and 2) kallisto.

```
library("DESeq2") # Import DESeq2
library(tximport) # Import tximport
samples <- read.table(file.path("sample_groups.csv"), header = TRUE, sep = ",") #_</pre>
\hookrightarrow Read in the sample groups
files <- file.path("../../kallisto", samples$file, "abundance.h5") # Assign paths to_</pre>
→transcript abundance files (e.g. kallisto/ERR883768_1/abundance.h5)
names(files) <- samples$file # Assign each path with its sample id (e.g. ERR883768_1)</pre>
tx2gene <- read.table(file.path("../../Genome/GCF_000214255.1_Bter_1.0_genomic.tid_</pre>
⇔file
txi <- tximport(files, type = "kallisto", tx2gene = tx2gene) # Read in the kallisto_</pre>
→files and convert the transcript abundances to gene abundances
coldata <- read.csv("sample_groups.csv", row.names=1) # Read in the sample groups
coldata <- coldata[,c("group","type")] # Limit the columns in the sample groups to.
\rightarrow group and type
coldata$group <- factor(coldata$group) # Categorize and save the sample group data</pre>
coldata$type <- factor(coldata$type) # Categorize and save the sample type data
dds <- DESeqDataSetFromTximport(txi, coldata, ~group) # Create a DESeq object from_
→the tximport data
dds <- DESeg(dds) # Run DESeg
res <- results(dds) # Save the results</pre>
resOrdered <- res[order(res$pvalue),] # Save the adjusted p-values
write.csv(as.data.frame(resOrdered), file="DESeq2_kallisto.csv") # Create a csv of_
↔results w/adjusted p-values
```

Useful Links

- DESeq2 Documentation
- DESeq2 Reference Manual
- DESeq2 Homepage
- DESeq2 Reference (Love et al., 2014)
- tximport Documentation
- tximport Reference Manual
- tximport Homepage
- tximport Reference (Soneson et al., 2015)

2.3.4 sleuth

A method to identify DE genes using only from kallisto transcript abundances. Below you will find a commented R script.

```
library("sleuth") # Import sleuth
s2c <- read.table(file.path("sample_groups.csv"), header = TRUE,</pre>
↔stringsAsFactors=FALSE, sep=",") # Read in the sample groups
kal_dirs <- file.path("../../kallisto", s2c$file) # Assign the paths to the...</pre>
→transcript abundance files (e.g. kallisto/ERR883768_1/abundance.h5
s2c <- dplyr::select(s2c, sample = file, group) # Change the file header to sample</pre>
s2c <- dplyr::mutate(s2c, path = kal_dirs) # Add the transcript abundance paths to..</pre>
\hookrightarrow the sample information
tx2gene <- read.table(file.path("../../Genome/GCF_000214255.1_Bter_1.0_genomic.tid_</pre>
→to_gid.csv"), header = FALSE, sep = ",") # Read in the transcript/gene conversion_
⇔file
colnames(tx2qene) = c("target_id", "gene_id") # Assign the columns in the transcript/
→gene conversion file
so <- sleuth_prep(s2c, target_mapping = tx2gene, aggregation_column = "gene_id",_</pre>
-- extra_bootstrap_summary = TRUE) # Create a sleuth object, and convert the_
⇔transcript to gene abundances
so <- sleuth_fit(so, ~group, "full") # Fit the data</pre>
so <- sleuth_fit(so, ~1, "reduced") # Fit the data</pre>
so <- sleuth_lrt(so, "reduced", "full") # Perform an lrt</pre>
sleuth_table <- sleuth_results(so, "reduced:full", "lrt", show_all = FALSE) # Create_</pre>
\rightarrowa table of the results
write.csv(as.data.frame(sleuth_table), file="sleuth_kallisto.csv") # Create a csv of,
\leftrightarrow results
```

Useful Links

- sleuth Manual
- sleuth Walkthroughs
- sleuth Homepage
- sleuth GitHub
- sleuth Reference (Pimentel et al., 2017)

CHAPTER 3

SLURM

3.1 Serial Jobs

Most scripts - including a large number of bioinformatic analyses and pipelines - may be considered serial processes, as only a single task (i.e. single line of code, algorithm, function, analysis, etc.) is processed at a time. Submitting a serial job only requires the creation of a SLURM script.

```
#!/bin/bash
   #SBATCH --job-name=myserial-job
                                                      # Name of the job
2
   #SBATCH --output=myserial-job.%j.out
                                                      # Name of the output file (with jobID
3
   → % j)
   #SBATCH --error=myserial-job.%j.err
                                                      # Name of the error file (with jobID
4
   نج ÷ ⇒ ⇒ ⇒
   #SBATCH --nodes=1
                                                      # Node count
5
   #SBATCH --ntasks=1
                                                      # Number of tasks across all nodes
6
   #SBATCH --cpus-per-task=1
                                                      # Cores per task (>1 if multi-
7
   →threaded tasks)
   #SBATCH --mem-per-cpu=4G
                                                      # Memory per core (4G is default)
8
   #SBATCH --time=00:01:00
                                                      # Run time limit (HH:MM:SS)
9
   #SBATCH --mail-type=all
                                                      # Email on job start, end, and fault
10
   #SBATCH --mail-user=<YourNetID>@princeton.edu
                                                     # Email address
11
12
   echo 'Hello world!'
13
   echo 'This is my first SLURM script'
14
   echo 'Behold the power of HPC'
15
```

3.2 Multithreaded Jobs (i.e. MPI)

Often a complex or large serial process (e.g. RNA-seq alignment, homology identification, etc.) may be accelerated using multithreading (i.e. simultaneous execution of multiple CPU threads/cores). This often results in higher computational resource usage but lower wall-time.

```
Listing 3.2: mympi.slurm
```

```
#!/bin/bash
1
   #SBATCH -- job-name=mympi-job
                                                      # Name of the job
2
   #SBATCH -- output=mympi-job.%j.out
                                                      # Name of the output file (with jobID
3
   ↔ 8 i)
   #SBATCH --error=mympi-job.%j.err
                                                      # Name of the error file (with jobID
4
   (خ ⇒
   #SBATCH --nodes=1
                                                      # Node count
5
6
   #SBATCH --ntasks=1
                                                      # Number of tasks across all nodes
   #SBATCH --cpus-per-task=10
                                                      # Cores per task (>1 if multi-
7
   \hookrightarrow threaded tasks)
   #SBATCH --mem-per-cpu=4G
                                                      # Memory per core (4G is default)
8
   #SBATCH --time=00:01:00
                                                      # Run time limit (HH:MM:SS)
9
   #SBATCH --mail-type=all
                                                      # Email on job start, end, and fault
10
   #SBATCH --mail-user=<YourNetID>@princeton.edu  # Email address
11
12
   blastn -query query.fasta -db db.fasta -out blast.out -num_threads 10
13
```

3.3 Array Jobs

Situations often arise when you want to run many almost identical jobs simultaneously, perhaps running the same program many times but changing the input data or some argument or parameter. One possible solution is to write a Python or Perl script to create all the slurm files and then write a BASH script to execute them. This is very time consuming and might end up submitting many more jobs to the queue than you actually need to. This is a typical problem suited to an array job. Below is an example of a SLURM array script (See *myarray.slurm*) that submits jobs line by line from a task file (See *slurm_jobs*). Task files are an ideal solution when running jobs with random filenames - i.e. without a repeated pattern.

Listing 3.3: myarray.slurm

```
#!/bin/bash
1
   #SBATCH --job-name=myarray-job
                                                      # Name of the job
2
   #SBATCH --output=myarray.%A.%a.out
                                                      # Name of the output files (with_
3
   →array jobID %A, and task number %a)
   #SBATCH --error=myarray.%A.%a.err
                                                      # Name of the error files (with array,
4
   \rightarrow jobID %A, and task number %a)
   #SBATCH --nodes=1
                                                      # Node count
5
   #SBATCH --ntasks=1
                                                      # Number of tasks across all nodes
6
   #SBATCH --cpus-per-task=1
                                                      # Cores per task (>1 if multi-
7
   \rightarrowthreaded tasks)
   #SBATCH --mem-per-cpu=4G
                                                      # Memory per core (4G is default)
   #SBATCH --time=00:01:00
                                                      # Run time limit (HH:MM:SS)
   #SBATCH --array=1-6%3
                                                      # Job array, limited to 3
10
   ⇔simultaneous tasks
   #SBATCH --mail-type=all
                                                      # Email on job start, end, and fault
11
   #SBATCH --mail-user=<YourNetID>@princeton.edu
                                                    # Email address
12
13
   sed -n -e "$SLURM_ARRAY_TASK_ID p" slurm_jobs | bash
14
```

Please note: In comparison to our serial SLURM script, our array script includes two additional aruments - %*j* and \$*SLURM_ARRAY_TASK_ID*. %*j* is used to add the job id to our stdout/stderr output files, thus resulting in a set of stdout/stderr files for each task. \$*SLURM_ARRAY_TASK_ID* is used to assign the current task ID (1, 2, 3, etc.) from

#SBATCH –array=1-6. The IDs are then used by the *sed* command to run the relevant line number.

Listing	3.4:	slurm	jobs
---------	------	-------	------

1	echo	'Line	1'
2	echo	'Line	2'
3	echo	'Line	3'
4	echo	'Line	4 '
5	echo	'Line	5'
6	echo	'Line	6'

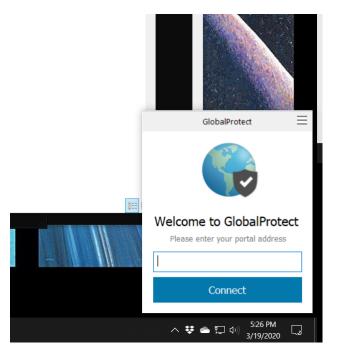
3.4 Additional Information

More tutorials and information on SLURM may be found at the Introducing Slurm.

CHAPTER 4

VPN Installation Instructions

- 1. Visit the GlobalProtect VPN web portal.
- 2. Enter your Princeton NetID, your password, and click Log in.
- 3. Wait for Duo to send a request to your default device and approve the Duo request.
- 4. To download, click on the GlobalProtect Agent (see red box 4.1).


paloalto GLOBALPROTECT					Application URL	GlobalProtect Agent	👤 aewebb 🂙
	Google	Bing	Prime Portal	Library	NetAtlas		
		Cognos	OnBase	Stripes			

- Fig. 4.1: GlobalProtect VPN web portal
- 5. On Windows Select Continue installing from outside the Store (see red box 4.2).
- 6. You will see the GlobalProtect Setup Wizard. The installer will guide you through the steps required to install the software. Click Next.

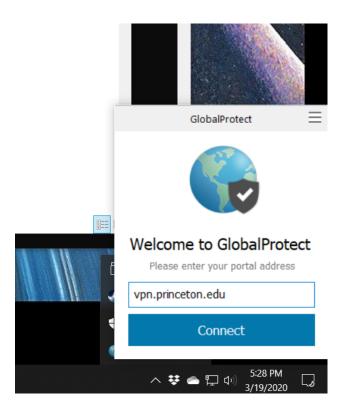
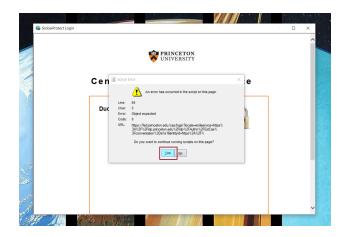

📋 Microsoft Store		×
	ds installing this app from the Microsoft	
Store to help protect	your PC.	
EVERYONE	GlobalProtect Palo Alto Networks • Business * * * * * 89 GlobalProtect for Windows Unified Platform connects to More Free Get Get Get Get Continue installing from outside the Store Change my app recommendation settings	Ja

Fig. 4.2: GlobalProtect Install

- 7. On the Select Installation Folder screen, click Next.
- 8. On the Confirm Installation screen, click Next.
- 9. On the Account Control pop-up, enter an admin user name and password. You will be asked, "Do you want to allow this app to make changes to your device?" Click Yes.
- 10. On the Installation Complete screen, click Close to exit.
- 11. Once installed, you should see the following pop-up (see image ??) on your desktop.

12. Type vpn.princeton.edu in the text box (see image ??), click Connect.


13. Enter your Princeton NetID, your password, and click Log in (see image ??).

PRINCETON UNIVERSITY	
Central Authentication Service	
NetiD Sassword	
LOGIN CLEAR	

14. A pop-up should then appear. Click Yes (see image ??).

15. Wait for Duo to send a request to your default device and approve the Duo request.

If you have connected, you should see a small blue globe on your taskbar (see image ??).

